

Designing for Sustainability www.altechnica.co.uk

Derek Taylor

complete architecture + renewables design servicewind turbine designzero energy designbuilding integrated renewable energy solutionsfeasibility studiesrenewable energy audits

85 Waterside Peartree Bridge Milton Keynes MK6 3DE tel / fax 01908 668797

Derek Taylor

© Altechnica

RT+40 Years of Wind Power Derek Taylor

Energy & Environment Research Unit, Open University

Altechnica

info@altechnica.co.uk

www.altechnica.co.uk

RT 1.0 'Wind Power : Natural, Endless, Free' by Derek Taylor 1976

ENERGY	52	
Indirect Solar Energy	59	Plant Your Power Rob
Insulation	64	Insulation Brenda Vale
Direct Solar Energy	65	Sunshine Su Robert Vale

perpower Wind Power 72 Natural, Endless, Free Derek Taylor

Jwn ert Vale

CONTENTS

FOO

Agrib Smallh

anic Gar

Biody

Macrol

Vegetar

Fish Fa

Hydrog Tree Fr

Storage and Prese Water

			ENERGY	\$2	,
	5	Preface	Indirect Solar Energy	59	Plant Your Own
	6	Introduction	Insulation	64	Insulation Resulta Vala
-	~		Direct Solar Energy	65	Sunshine Superpower
D	10		Wind Power	72	Natural, Endless,
iness	12	Agribusiness Charlie Clutterbuck	Water Power	89	Essentially Co-oper- ative Energy George
lding	17	Animal Farm	Stationary Engines	92	Woolston Cast Iron Porma
ening	19	Compost Culture Lawrence D. Hills	and a standard and a standard		Kit Pedler
imics	24	Biodynamic Agri- culture H H Koepf and John Dave		94	VISION 2: Basement Worksbop Clifford
ition	28	Food Glorinus Food			Harper
iotics	32	A Question of Balance Monica Hill		96	INTERVIEW: Sietz Leeflang by Godfrey
nism	34	Cut Out the Tripe Tony Joyce			Boyle
ming	36	After the Goldfish John Wood		~	
onics	37	The Answer Lies in Solution J Sholto	SHELTER	(98)	
ming	42	Douglas Great Pigs from Little Acorns Grow	Temporary Structures	100	Lightweight/Temp- orary/Low-cost/ Quick/Mobile Stefan
ation	44	Across the Hungry Gap John Seymour	Vernacular Construction	108	Folk Building
pply	46	Each Piece of Land to Each Piece of Sky George Woolston	Building with Subsoil	112	The Ground Oper Our Heads Colin
		orenge monthese	Self-Build	118	Self Help Housing
	48	VISION 1: Collectiv- ised Garden Clifford	Textiles	123	Man Maketh the Clothes Chris Room
		Harper		128	Shoes Nick Mellor
	50	INTERVIEW: Jobu			
		Rivers		130	INTERVIEW: Peter Van Dresser by Patrick Rivers
				132	VISION 3: Auto- nomotes Village Clifford Harper

NATURAL, ENDLESS, FREE The wind is a narrally-distributed, vinually maraped and norgentifurgenesser of energy. As marks of other many possibilities for the surrentiaged wind convert for the state of the state of the state surrentiaged wind can be casely controlled and beyone knows that winds was not used to prove high winds. It is this precomparison with large scenarcovery firms and not lead to the state of the state of the devices of the did largers were comparison with the cossing times achieved by maintenances of the larger for the state of the state of the bight winds. It is this precomparison with large for maintenances in the wind was not even of the maintenances in the wind was not even of the maintenances in the wind was not even of the maintenances in the wind was not even of the state wind the devices for the wind power from the state devices of the state state wind power from being fully explored quite agart from the essential state devices of the state state wind power form being fully explored quite agart from the essential state devices of the state state wind power story. The wind is a naturally-distributed, virtually intapped and non-polluting source of energy. As ries since the first windmills-evolved other devices for harnessing the wind, developed more hopeful side to the wind power story WINDMILL TYPES Fig 1, Windowill as One categorization of windmills divides them into vertical axis or borizontal axis machines. Vertical axis machines ("panemones") can accept winds coming from any direction, so do not require any \rightarrow coming ruom any uncettom, to do not require any orientation system to turn them into the wind, but usually have high drug characteristics. Horizontal axis machines sually have to be turned into the wind (hence requiring special mechanisms for orientation), but end to have better performance. Wind machines can also be classified according to the model of displacement of the blades or stalls. f. Windmills in which the blades move in the direct of the wind. There are two main types (see Fig 1): L Windmills in which the blades move in the same direction as the wind; II. Windmills in which the blades move 0 (the wind; II. Windmills in which the totales move perpendicularly to the direction of the wind.

 1. Windmills in which the blades most in the direction of the wind These machines are characterized by a tip-speed ratio (see glossary of terms) of less than 1, is the blades rotate at a speed lower than the wind speed. The blade speed in Jower than the wind speed. The blade speed in practice is rarely greater than a third of the wind speed which means that these are 'slow' machines. The axis of the rotor in such machines is perpendicular to the wind direction and is usually vertical. Generally only one blade or sail is actively Fig 2a. 'driving', while one or more of the blades is rotatin against the wind-which retards the overall speed of the mill. The different methods employed to overcome this problem of retardation are what distinguish the different wind machines in this ategory.) Windmills with simple drag With these machi a) wratinities wate somple and write incse machines, the blade moving against the wind changes its position so that it offers minimal resistance to the wind, or is screened off on the windward side. Wind, or is science of our ine waidward side. 1. Screen wind machine (see Fig.2). A suitably-placed screen dispenses with the problem of retardation of the blades turning against the wind. The screen can either be fixed or movable, the former obviously being only suitable when the wind direction is fairly constant. With a movable screen, the machine can eccept winds comine from ny direction, although it can be a complicated occess to move the screen. Screen machines can ave a vertical axis (these are sometimes called

e or alcohol, produced from fermentation mic wastes, as well as hydrogen. The engine e coupled to a generator for electricity

plosive. Work is being carried out into

the hydrogen in the form of solid hydrides, are much less inflammable. Hydrogen as a more environmentally desirable than most

ase fuel cells use rare metals as catalysts erate at high pressures, the technology ed is very advanced and currently prohibitiv

LUSZONS

uels as it causes very little pollution: on

'merry-go-round' windmills; see Fig 2b), or a orizontal axis (these are sometimes known as 'jumbo' windmills, see Fig 2c). The Russian Stastik windmill (Fig 2d), in which the whole machine was kept oriented into the wind was a horizontal-axis

2. Capper' type wind machine (see Fig 3a). The blades or sails are hinged, and swing about a vertical axis. A stop situated near each blade holds it back

James Blyth built his first wind generator in 1887 at Strathclyde. This one at Marykirk operated > 20 years.

Some Wind Power Activities at The Architectural Association 1970s

WIND POWER SHOP

architectural association

36, BEDFORD SQUARE, LONDON, WC1. TEL. 016360974 Diploma Lecture Room 10:30 a.m. Tuesdays 1 25 FEB. Derek Taylor - Introductory Lecture. 2 4 MAR. J.R. Tagg - ERA's Wind Power work in the 50's. 3 11 MAR. Gerry Smith - Economics of Windmills. 4 18 MAR. All day - Selfbuilders: -Prof. D. Elliot-Isle of Man 100kw. wind generator Small wind generators built to own designs:-Dr. N.G. Calvert: Kit Pedler: Tony Williame Dave Andrews: Cliff Collins: Rob Hitchings Robert Macintyre: John Shore Organised by Derek Taylor.

Derek Taylor Sailwing design Square VAWT by Derek Taylor 1970s & John Shore

John Shore's design for wind turbine & his Integrated Solar Dwelling 1970s.

StreetFarmers Sail turbine at Comtek 1970s

Derek Taylor

© Altechnica

4m Dia SailFoil HAWT project at ATG Open University Designed & Tested by Derek Taylor - 1980s

Dr Geoff Watson's Maximill Darrieus 1970s at NEW.

Will Gryll's Cyclic Pitch VAWT at Exeter University 1970s-80s

Dr Peter Musgrove's 1st Variable Geometry VAWT Reading University 1970s.

Brian Hurley's Sailwing VAWT Dublin 1970s.

Derek Taylor

© Altechnica

The 1 MW TVIND turbine began producing electricity in march 1978.

The turbine was built by teachers and pupils at the schools, in an incredibly tough and long lasting working period.

This turbine was a beacon and a great inspiration for the early Danish wind power community.

The Tvind windmill, "Tvindkraft" was created during the years 1975-78, at the initiative of and financed by the teacher group of the schools at Tvind. The time was the time of the oil crisis, and the debate was for or against nuclear power - for or against wind power - nuclear power or wind power. The price of energy had multiplied, and something had to be done. The Danish industry was pressing on to introduce nuclear power as a cheap alternative to the expensive oil. A majority in the Danish Parliament was building up. At Tvind people were against the nuclear power, with its problems of nuclear waste and monopolization

Derek Taylor

© Altechnica

Visionary American politicians opened a great marked for the worlds Wind Industry. Also the Danes grabbed that opportunity.

In 1982/1983 the first Danish wind turbines were shipped to California. Until 1986 this Californian Wind Rush kept Danish companies busy, especially the last weeks of the year, as turbines should be commissioned, and on line before December 31st, in order to secure the investors their federal-, and state- tax credits.

© Altechnica

DOE/NASA 1995

Derek Taylor

© Altechnica

Current Wind Power Capacity

RenewableUK - accessed August 2016

Onshore Wind Projects					
Onshore Turbines	5402	Onshore Operational Projects	1021	Onshore Operational Capacity	8871.825
J Offshore Wind Projects					
Offshore Turbines	1465	Offshore Operational Projects	28	Offshore Operational Capacity	5097.6
TOTAL					
Total Operational Capacity	13969.4	25 Energy Produced (MWh/p	.a.)	37201138	
Homes Powered Equivalent (p.a.)	9446708	CO2 reductions (pa) in Tonn	es	15996489	

GLOBAL CUMULATIVE INSTALLED WIND CAPACITY 2000-2015

HAWTs

Horizontal Axis Wind Turbines: HAWTs

VAWTs

Vertical Axis Wind Turbines: VAWTs

Three Bladed HAWT

Derek Taylor

V - type VAWT

© Derek Taylor

Tellour Alumburg

www.altechnica.co.uk

Taylor V. Turbine m

T-Brake™

Derek Taylor

Patented Sycamore Rotor VAWT™

FEATURES

- No yawing as able to use winds from all directions
- Reversing gravitational loads avoided
- · Optimum swept area geometry most at high level
- Short tower requirement
- Easy access to generating machinery
- Best VAWT blade length to swept area ratio
- Straight untwisted blades
- · Blades can be folded down to ground level
- Low level blade installation without a tall crane
- · Low level maintenance avoids climbing tall towers
- · More feasible to install in difficult locations
- · Easier to use direct drive low speed generators
- Blade operates at constant height
- · Blade always in the higher power upper winds
- · Minimal material content for a wind turbine
- Low visual impact in operation.
- · Only turbine able to be parked at/near ground level
- Almost zero visibility when blade parked
- · Only turbine with no tower in swept area region
- · Only VAWT with a teetering rotor.
- Low overturning moments
- · Only VAWT with a single span cantilevered blade
- Novel design gives static & dynamic balance.
- Short rotation shaft
- · Highly suited to off-shore operation
- · Floating wind turbines more feasible

© Altechnica

Multi-Megawatt Turbines

2.5 MW Wind turbine 80 m dia.

4.5 MW Wind turbine 112 m dia.

7.5 MW Wind turbine 126 m dia.

Derek Taylor

© <u>Altechnica</u>

UPWIND PROJECT FOR 20 MW TURBINE

UPWIND PROJECT

A.1 General properties

Variable	Unit	5 MW ref turbine	20 MW ref turbine
Nominal power	MW	5	20
Rotor diameter	m	126	252
Hub height	m	90	153
Number of blades	-	3	3
Blade span	m	61.5	123
Tower height (incl. monopile)	m	107.6	168.2
Water depth	m	20	20
Rated tip speed	m/s	80	80
Rated rotor speed	rpm	12.1	6.05
Cut-in rotor speed	rpm	4.7	2.58
Gearbox ratio	-	97	194
Cone angle	0	-2.5	-2.5
Rotor tilt	0	5	5

Figure 5: Sectional blade

a. Hermann Honnef's Wind Turbine

e. Windship multi-rotor Wind Turbine

b. Three rotor Array Wind Turbine

c. Four rotor Array Wind Turbine

f. Four Rotor Array Wind Turbine

g. Octopus Wind Tech. 250MW Wind Turbine

d. Three rotor Array Wind Turbine

h. Seven Rotor Array Wind Turbine

Fig.1 Co-planer Multi Rotor Wind Turbines

С

Multi rotor system concept

Zone	Name	Developer		Round	13 Windfa	rm Zone
1	Moray Firth	Moray Offshore Renewables Limited	_	Tarrite	rial Mater	re Limit
2	Firth of Forth	Seagreen Wind Energy Limited	- Territorial Waters Limit		rs Limet	
3	Dogger Bank	Forewind Limited	_	- UK Co	ntinental	Shelf
4	Hornsea	SMart Wind Limited	Ba	thymet	ny -	
5	East Anglia	East Anglia Offshore Wind Limited		Shallo	w	
6	Southern Array	E.on Climate & Renewables UK Southern Array Limited				4
7	West Isle of Wight	Eneco Round 3 Development Limited		Deep		N
8	Atlantic Array	Bristol Channel Zone Limited	n	60	100	200
9	Irish Sea	Centrica Energy Bengwable Investments Limited	_			in in

Derek Taylor

© Altechnica

Derek Taylor

© Altechnica

Current Floating Wind Turbines under development

MICRO wind turbines

Derek Taylor

© Altechnica

SMALL wind turbines

Hugh Piggot has enabled many to build their own small wind generator

www.scoraigwind.co.uk

Private + Community Wind Turbines

Single WTs for electricity saving, e.g.

- medium size WT (200 600 kWp)
- Iarge megawatt class machine

It is possible to sell the excess electricity to provide a revenue stream. Over 38% of wind turbines in Denmark are owned by local co-operatives with support from banks & building societies.

Derek Taylor

© Altechnica

Community Turbines for Housing

- On appropriate sites, Community WTs may be viable for housing.
- CWTs can provide electricity + heating via local heat stores.
- A CWT can produce electricity for many houses or a village.

Danish Co-housing scheme of solar houses & community wind turbine.

Hockerton Housing Association: Earth Sheltered zero energy houses & community wind turbines

- Costs can be shared between several householders
- CWT can be operated by themselves or a management company.

Derek Taylor

© <u>Altechnica</u>

1st Offshore Wind Power Co-op

The name of the partnership is Middelgrunden Wind **Turbine Co-operative.**

Stubben Ten Bonus 2 MW wind turbines. Each of turbines hub height is 64 m & rotor dia. of 76 m.

Estimated to generate 89,000 MWh per yearequiv to 3 % of the electricity consumed in Copenhagen.

Middelgrunden Wind Co-operative Project - Copenhagen.

Derek Taylor

© Altechnica

info@altechnica.co.uk

Trekroner

Middelgrunds Fort

Hollænderd

MOO

røvester

Altechnica Aeolian Roof™ + SolAirfoil™

- The patented Aeolian Roof[™] consists of a planar 'wing' concentrator above the highest region of a pitched or curved or membrane or vaulted roof.
- In the gap between the 'wing'
 & the ridge are located small cross or axial flow wind turbines.

Substantial potential for retrofitting Aeolian Roof + SolAirfoil[™] hybrid wind & solar systems onto existing buildings.

Derek Taylor

© Altechnica

Aeolian Roof[™] Prototype on Test Building

© Altechnica

Altechnica AeroSolar™ DekHouse

Engineered Design Approach facilitates Super Insulation, Zero energy design, Energy Positif & Integration of Renewables

TIMBER TOWER

BUILDING WITH SOLID WOOD

The wooden panels are placed against the falsework and, starting with the largest panels at the foot of the tower, each panel is added in turn along a path in the shape of a corkscrew until the top of the tower is reached. The panels are then bolted together and in addition, using a total of 2,000 perforsted steel plates, bonded from the inside.

GROWING HIGHER

The plastic sheeting joints on the external service surface are bonded using an exterior lift to form a surface protection layer without gaps. This form of wood protection, the material used, together with the used construction methods make hub heights of 140 m possible for even more powerful wind energy plant.

TIMBER TOWER

TimberTower

Solar Chimney Revisited

First Solar Chimney - Spain 1980s

MANZANARES SOLAR TOWER

AeroSolar Chimney - Wind Augmented

Altechnica design & shape of multifunctional wind+ solar chimney not shown here but based on hyperboloid grid tower & transparent collector with common features with these towers.

Designed to produce power + food + fresh water. Can operate in deserts, arid & temperate sunny areas.

The Evolution of Wind Power

Derek Taylor

© Altechnica

Wind Energy Storage

A number of promising options including:

- local pumped hydro
- wind-assist tidal power
- distributed H2 via eff. electrolysers
- *Power2Gas* > gas engine CHP
- Fuel Cells CHP/Trigen
- NH4 as H2 carrier
- Power2Diesel liquid fuels
- Liquid Air technologies & coolth
- Range of much more efficient batteries
- Interchange with EV/PHEVs & V2G
- Thermal stores via large heat pumps

Derek Taylor

© Altechnica

Designing for Sustainability www.altechnica.co.uk

Derek Taylor

complete architecture + renewables design servicewind turbine designzero energy designbuilding integrated renewable energy solutionsfeasibility studiesrenewable energy audits

85 Waterside Peartree Bridge Milton Keynes MK6 3DE tel / fax 01908 668797

Derek Taylor

© Altechnica